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We study the Bhatnagar-Gross-Krook model kinetic equation with a velocity- 
dependent collision frequency. We derive the conditions that must be verified in 
order to keep the main physical properties of the Boltzmann equation, i.e., H- 
theorem and conservation laws. The particular case of the so-called VHP 
interaction is considered, and the resulting kinetic equation is solved for a 
homogeneous and isotropic gas. Overpopulation phenomena are observed and 
analyzed for some kinds of initial conditions. The results are compared, where 
possible, with the exact solution of the Boltzmann equation. 
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1. INTRODUCTION 

In the last few years a great effort has been devoted to the search for 
particular solutions of the Boltzmann equation. (1) Because of the 
mathematical complexity, studies have been restricted to very simple 
physical situations, and simplified collision models have been considered. 
Nevertheless, the results have turned out to be very interesting. For instance, 
an overpopulation phenomenon at high energies (the so-called Tjon effect) 
has been discovered, m 

Most of the solutions of the Boltzmann equation we are aware of refer 
to a spatially homogeneous and isotropic system. Usually, the particles are 
assumed to interact via a Maxwell potential, although some stochastic 
interactions have also been proposed and analyzed. (~-3) 

In this paper we will be concerned with the Bhatnagar-Gross-Krook 
(BGK) model kinetic equation, (4) where the Boltzmann collision term is 
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approximated by an exponential relaxation towards a reference state. In spite 
of its apparent simplicity, this equation has only been studied with some 
detail for cases where the collision frequency does not depend on the 
velocity. Then, the usual local equilibrium is taken as the reference state. 
However, if the collision frequency is velocity dependent, the above choice is 
not adequate if one wants to keep the conservation of mass, momentum, and 
kinetic energy. Following a discussion by Cercignani, t4) we propose here a 
BGK equation where the reference distribution function is assumed to be a 
Gaussian function of the velocity. The parameters appearing in this function 
are expressed as functionals of the actual distribution function of the system. 
This is done by requiring the conservation laws to be verified. For the case 
of velocity-independent collision frequency, we recover the standard 
equation. One of the advantages of the model is that it allows the study of 
the evolution of homogeneous and isotropic systems, for which the local 
equilibrium distribution coincides with the total equilibrium one. So, the 
BGK equation with a velocity-independent collision frequency becomes 
trivial in this case. 

The paper is organized as follows. In Section 2 we construct our model 
and derive the consistency equations for the parameters appearing in the 
reference distribution function. We also discuss the formal relation between 
the Boltzmann equation and the BGK model. The results are particularized 
for Maxwell molecules and for the VHP interaction. (5) 

In Section 3, the general theory is applied to a homogeneous and 
isotropic gas. For the VHP interaction, the reference distribution function is 
determined by the second energy moment. The time evolution of the 
moments is analyzed in Section 4. It is shown that the nth energy moment 
can be expressed as a non-Markovian functional of the second moment plus 
a term depending on the entire initial distribution. As a consequence, we get 
a well-defined equation for the second moment. 

For Maxwell molecules, Hauge (6) proposed a general criterion deter- 
mining whether the Boltzmann equation presents the Tjon effect. The 
relevant quantity appears to be the initial second energy moment. We discuss 
the validity of this criterion in our model in Section 5, where several kinds of 
initial conditions are considered. Our conclusion is that for situations where 
the initial second moment plays the main role in the evolution of the system, 
Hauge's criterion applies. These situations are characterized by a monotone 
relaxation of the second moment. In other cases, higher-order initial 
moments must be considered. 

Finally, in Section 6, we present some numerical results corresponding 
to the VHP interaction for two and three dimensions with different initial 
conditions. It is seen that the overpopulation effect shows up for cases where 
it is predicted by the second moment criterion. For the two-dimensional case, 
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the results are compared with the analytic solution of the VHP interaction 
Boltzmann equation. ~'5) 

2. DESCRIPTION OF THE MODEL 

We start with the Boltzmann equation governing the evolution of the 
one-particle distribution function f ( r , v ; t )  of a dilute gas. In standard 
notation, it reads 

) f f ~ - + v . V  f ( r , v ; t ) =  d v l  dfigI(g,z)[ f (r ,v ' ; t ) f (r ,v~;t  ) 

- - f ( r ,  v; t)f(r ,  v, ;t)] (2.1) 

where g =  [ v - v l t ,  I (g ,x)  is the differential cross section of the collision 
(v, v~) ~ (v', v~), X is the scattering angle, and dfi is the solid angle element. 
Equation (2.1) can be formally written as 

-~- + v .  V f(r ,  v; t) = --~(r, v; t)[f(r, v; t) --fR(r, v; t)] (2.2) 

with 

~(r, v; t) = f dv, f dfi gI(g, z)f(r ,  v, ; t)  (2.3) 

and 

fR(r, v; t) = [r v; t)]-1 f dv I / dfi gI(g,x)f(r  , v'; t)f(r ,  v'~ ; t) (2.4) 

Equation (2.2) can be understood as a relaxation time equation, where 
the effect of collisions is given by the relaxation o f f ( r ,  v; t )  towards the 
"reference" distribution function fR(r, v; t). In fact, ~(r, v; t) is the collision 
frequency for molecules of velocity v. 

As is well known, the Boltzmann equation describes very satisfactorily 
the time evolution of a simple dilute gas. From a physical point of view, the 
two main properties of the Boltzmann equation are the following: 

(i) The collision term conserves the mass, the momentum and the 
energy. Using the form (2.2), we express this as 

/ dv A'~(v) ~(r, v; t)[f(r, v; t) - f R ( r ,  v; t)] = 0 (2.5) 



126 

where 

(ii) 
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{An(v)} = {1, v, v 2 } (2.6) 

The Boltzmann equation leads to the H-theorem, showing the 
irreversible evolution of the system towards equilibrium: 

dv -~  + v .  V f ( r ,  v; t ) l o g f ( r ,  v; t) ~< 0 (2,7) 

The equality in (2.7) is verified by a solution of the Boltzmann equation only 
if the system is at equilibrium, (7) i.e., if the distribution function is 

( m  t d'2 ( m<t (2.8) fe~(v)=. 
\2n-~-~BT] exp \ 2k, T! 

Here, n is the number density, T is the temperature, k ,  is the Boltzmann 
constant, m is the mass of a particle, and d is the dimension of the system. 

The formal solution of the Boltzmann equation (2.2) can be written as 

f ( r ,  v; t) = e tv. VU(r, v; 0 f ( r ,  v; 0) 

+ dse -tv'vU(r,v;t) U ' ( r , v ; s )  

X e sv" Vr v; s)fR(r, v; s) (2.9) 

where we have introduced the quantity 

U(r,v;t)=exp [ -  fl ds~(r + sv, v;s)] (2.10) 

Nevertheless, getting from (2.9) an explicit solution is a very hard task, 
due to the complex structure of the collision kernel. And this refers to 
analytic as well as numerical calculations. Only very simplified models have 
been solved up to now. (1) For interaction potentials of the form 

q~(r) ~ r ~ (2.11) 

the collision rate factorizes in the form 

gI(g, X) = g l -  2(d- ,)/,a e(Z) (2.12) 

So, for these potentials, the collision frequency (2.3) is given by 

r v; t) = C~f d v  1 g'-2(d--1)/~e(r ' v ,  ; l )  (2. 13) 
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Here, C~ is a constant resulting from the integration over the angular 
variables. The simplest case corresponds to the so-called Maxwell molecules, 
for which e = 2 ( d -  1). Then, the collision rate does not depend on g and 

~v(r, v; t) = {v(r, t) = CMn(r, t) (2.14) 

i.e., the collision frequency is velocity independent and it is proportional to 
the local density of particles n(r, t) defined as 

n(r, t) = .( dv f(r ,  v; t) (2.15) 

Bobylev, (8) and also Krook and Wu, (9) found an exact, although 
particular, solution of the Boltzmann equation for Maxwell molecules. They 
considered a homogeneous gas with an isotropic velocity distribution, 
assuming a very special initial condition. Later on, the general solution for 
arbitrary initial conditions was obtained in terms of Laguerre series.(1~ 

One of the most interesting interaction potentials is the hard sphere 
potential, which can be obtained from (2.11) in the limit e ~ m. Although it 
has been extensively used in kinetic theory, no one has up to now succeeded 
in finding an exact solution of the Boltzmann equation for this potential. The 
reason is that it leads to a collision rate proportional to g, and then the 
integral defining the collision frequency in Eq. (2.13) becomes very intricate. 
Ernst ~5) realized that there is a case where ~(r, v; t) can be expressed in a 
simple way, namely, when 

gI(g, X) = gZa(z) (2.16) 

That means that the collision rate grows with g even faster than for hard 
sphere interaction, and so Eq. (2.16) does not correspond to any physical 
potential. Following Ernst, we will refer to this model as the very hard 
particle (VHP) model. The collision frequency for this model is 

~vnp(r, v; t) = Cvnen(r, t) l d kB T~r' t) + [v - u(r, t) ]21 (2.17) 

where we have introduced the local temperature T(r, t) and the local velocity 
u(r, t) defined by 

n(r, t) u(r, t) = f  dv vf(r, v; t) (2.18) 

m 
d n(r, t) k, T(r, t) = f dv ~-  Iv - u(r, t)] 2f(r, v; t) (2.19) 
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Again, Cvnp is a constant depending on the form of the function a(x) in 
Eq. (2.16). 

The Boltzmann equation for the VHP model has been solved for a two- 
dimensional gas, in the case of homogeneity in space and isotropy in 
velocities. (~) 

Of course, the chance of exactly solving the Boltzmann equation for a 
given model is directly related to the simplicity of the collision frequency. 
The Maxwell and the VHP models correspond to the two simplest choices. It 
is easily seen that any other collision rate may lead to a much more 
complicated equation. 

The above difficulties have prompted and stimulated the search for 
simplified versions of the Boltzmann equation. They are usually referred to 
as model kinetic equations. Perhaps one of the best known is the Bhatnagar- 
Gross-Krook (BGK) model. (4) The idea is to substitute the functions 

fR(r, v; t) and r v; t) appearing in Eq. (2.2) by simpler functionals of the 
distribution f(r ,  v; t). The usual choice for fR is the local equilibrium form; 
i.e., one takes 

f , ( r ,  v; t) = ft(r, v; t) 

I 
2~zk R T(r, t) ] exp - 2k B T(r, t) 

where n(r,t), u(r,t), and T(r,t) are defined by Eqs. (2.15), (2.18), and 
(2.19), respectively. The distribution (2.20) satisfies the conditions 

f dvA'~(v)f(r, v; t) = f dvA%v)f~(r, v; t) (2.21) 

where the A~'s are defined in Eq. (2.6). Also, different approximations for 
the collision frequency are used, depending on the problem at hand. 
However, if ~ depends on the velocity, Eqs. (2.5) and (2.21) cannot be 
simultaneously satisfied. In other words, if we consider the BGK model with 
a velocity-dependent collision frequency and we take for fR the local 
equilibrium form (2.20), then the AS(v) do not correspond to conserved 
quantities. 

Here, we are going to reformulate the BGK model in a slightly different 
way. We assume that 

fR(r, v; t) = fB(r, v; t) 

= a(r, t) exp[b(r, t ) .  V(r, t) -- c(r, t) V2(r, t)] (2.22) 

where 

V(r, t) = v - u(r, t) (2.23) 
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and a, b, and c are field variables that are determined by requiring the 
kinetic equation to verify the physical conditions (2.5). Moreover, once the 
functional form (2.22) has been assumed for fR(r,v;t) ,  Eqs.(2.5) 
automatically imply the H-theorem, Eq. (2.7). This can be easily seen from 
the relation 

f dv~(r,v;t)[f(r,v;t)-- fB(r,v;t)]logfB(r,v;t)=O (2.24) 

that follows from Eqs. (2.5). 
In our model, we will keep the collision frequency as given by Eq. (2.3), 

i.e., the same expression as it had in the Boltzmann equation. For Maxwell 
molecules, Eq. (2.14), the distribution (2.22) reduces to the local equilibrium 
one, Eq. (2.20). The case of VHP interaction, Eq. (2.17), is studied in 
Appendix A, where it is shown that conditions (2.5) lead to the following set 
of equations: 

2dn k~ T D (d kB T b 2 d \ 
m = \ m +~Tc2+~e)  (2.25) 

2 J__=D (aGr  + b 2 + d + 2 ' ~  
m 2c m ~ ~ /  

In these expressions 

and we have introduced the heat flux 

d/2 

b (2.26) 

+ 2dc)d ~ - +  ~ ]  

(2.27) 

(2.28) 

J(r, t ) =  2 f dv V2(r, t) V(r, t )f(r ,  v; t) (2.29) 

and the local function 

�9 (r, t) = f dv V4(r, t)f(r ,  v; t) (2.30) 

The presence of J(r, t) and 0~(r, t) in Eqs. (2.25)-(2.27) indicates that in 
order to identify the reference state in the VHP model we need up to the 
fourth moment in velocity space of the distribution function. The local 

822/37/l-2-9 
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equilibrium distribution f t  only requires the knowledge up to the second 
velocity moment, while the exact reference distribution function in the 
Boltzmann equation, given by Eq. (2.4), is a functional of all the moments of 

f ( r ,  v; t). 
Up to now, everything has been general in the sense that no particular 

physical situation has been considered. In the following sections, we will deal 
with the application of this formalism to a homogeneous and isotropic 
system. 

3. HOMOGENEOUS AND ISOTROPIC GAS 

Let us consider a spatially homogeneous gas with an isotropic distri- 
bution of velocities. In this case, the distribution function depends only on 
the modulus of the velocity, and the densities of the conserved quantities take 
their equilibrium values. So, the local equilibrium function reduces to the 
(total) equilibrium one. As a consequence, the BGK model for Maxwell 
molecules becomes trivial and leads to 

f (v ,  t) = feq(v) + e-~Mt[f(v, 0) - - feq(v) ]  (3.1) 

The system presents an exponential relaxation towards equilibrium at all 
times. That means that the model is too rough to describe the complicated 
and interesting behavior observed in the solutions of the Boltzmann 
equation. ~ One could think that this is a general feature of the BGK model, 
but we will see it is not the case. What makes the above description so 
limited is the fact that the evolution of the distribution function appears as 
controlled by the average of the conserved quantities. The VHP model, 
which incorporates higher moments, allows a much richer description of the 
system. 

It is convenient to go over to the energy representation. We introduce 
the dimensionless variable 

m/) 2 
x - (3.2) 

2keT 

and the distribution function 

mY 2 \ F(x,t):~fdVl~X 2"-kBB T ) f(/-) 1 , t) 

( 2rc~ T ) a/2 xd/2 ~ 1 
= - -  r ( a / 2 )  n f ( v ,  t )  

(3.3) 
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The corresponding equilibrium expression is 

x d / 2  - 1 

r~ r(d/2~ e-~ (3.4) 

while the reference distribution defined in Eq. (2.22) takes the form 

FB(x, t) = v(t) xa/2_le_X/o. ~ (3.5) 
r(d/2)[O(t)] el2 

with the definitions 

= (3.6) 
n 

m 
O(t) - (3.7) 

2k~ Tc(t) 

Upon writing (3.5), we have used the fact that for an isotropic system it is 
b = 0. This can be seen in the following way. If the system is isotropic, the 
collision frequency does not depend on the direction of v, and, thus, 
Eqs. (2.5) imply that fB must also be independent of it. In particular, for the 
VHP model, one can reach this result from Eq. (2.26). For an isotropic 
system it is J = 0 and, then, b = 0. 

In the BGK approximation, the distribution function F(x, t) obeys the 
equation 

c3 
c~t F(x, t) = -~(x,  t)[F(x, t) - -Fs(x,  t)] (3.8) 

For a homogeneous and isotropic system, the VHP collision frequency, 
Eq. (2.17), becomes time independent and reads 

~vnp(x) = ~o (1 + d X  ) (3.9) 

where Go = CvHpndkBT/m. Then, the formal solution of Eq. (3.8) yields 

F(x, t) = e-~VnP(X)tF(x, 0) + CVHp(X)~ Ids  e-gV"p(x)(t-')FB(x, s) (3.10) 

The function FB(x, t) depends on time through v(t) and O(t), which are 
functions of the moment qs(t) defined in (2.30). More precisely, v(t) and O(t) 
are given by Eqs. (2.25) and (2.27) with b = 0, i.e., 
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2 = v(t)[1 + 0(t)] 

d +-----2 -F M2(t) = v(t) O(t) ~ + O(t) 

(3.!1) 

(3.12) 

where we have introduced 

M2(I  ) = 
q~(t) 

d(d + 2) n(k 8 T/m) z 
(3.13) 

In general, we define normalized moments  M,(t) as 

f dv v2nf(v, t) F(d/2) (~~ 
Mn(t) = ~-vv2nfeq(v) r(n + d/2) Jo dxx"F(x,  t) (3.14) 

From this expression and the conservation laws, it follows that Mo(t ) = 
M l ( t ) =  1. On the other hand, Eqs. (3.11) and (3.12) lead to a quadratic 
equation for O(t), whose positive solution is 

O(t) = (d + 2) M2(t ) - d + {[3d + 8 + (d + 2) MR(t)] - 32(d + 2)} 1/2 

4(d + 2) 

As M2(t ) must be positive, we can establish a bound for 0(t): 

(3.15) 

In Fig. 1 we have plotted 0 and v as functions of  M z for d = 3. It is seen 
that when M 2 takes the equilibrium value, M 2 = 1, it is v = 0 = 1, i.e., these 
parameters  also take their equilibrium values and, so, the reference 
distribution function coincides with the equilibrium distribution. 
Nevertheless, as we will see in the next section, these values are not 
conserved in time unless M n = 1 for all n. In other words, conservation of M 2 
implies that the system is at equilibrium. 

To study the time evolution of the system let us introduce 

F(x, t) 
R(x, t) - Feq(x) (3.17) 

satisfying the equation 

R(x, t) = e-~v"P(X)tR(x, O) 

+ ~vHP(x) i t  ds e-~V"p(x)(t-S)R~(x, s) 
Jo 

(3.18) 

- -d  + (9d 2 + 16d) L/2 
O(t) > 0m~ . -- (3.16) 

4(d + 2) 
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Fig. 1. Dependence of the parameters v and 0 defining the reference distribution function, on 
the second moment  M 2 for the three-dimensional VHP interaction in the BGK model. 
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Graph of the reference function R#(x) versus x for several values of the time- 
dependent parameter 0 in the case d = 3. 
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where 

Re(x' t)= Feq(x~ - [1 +O(t)][O(t)] d/2 exp 1-0--  ~ x (3.19) 

Notice that Eq. (3.18) is a closed equation for the function R, as 0 is a 
functional of R through M 2, according to Eq. (3.15). 

It is interesting to know how the shape of RB(x ) changes with 0. In 
Fig. 2, we represent Re(x ) as a function of x for several values of 0. The 
curves correspond to the three-dimensional case, for which 0m~ n -0 .418 .  For 
0 < 1, Re(x ) is a decreasing function of x, while it is an increasing function 
when 0 > 1. It is also observed that the slope rapidly increases with x for 
values of 0 greater than one. We will come back to this figure in Section 5. 

4. EVOLUTION OF THE M O M E N T S  

In order to evaluate (3.18), we need O(t) or, equivalently, M2(t ). 
Evolution equations for the moments can be derived from (3.8). For the 
VHP model, one gets 

c~-~ M,(t)  = -C0 [M,(t) - MR," (t)] 

C0 (1 + [M,+~(t)--Me,,+~(t)] (4.1) 

with 
F(d/2) ~cf3 [O(t)] 

J dx x"Fs(x, t) = 2 (4.2) 
M . , . ( t )  - r(n + a / z )  0 1 + o(t~ 

For the sake of simplicity, we will take in the following Co 1 as the unit of 
time, so we will take C0 = 1. 

Thus, we have a hierarchy of equations, the evolution of M,(t) 
involving the next moment M,+l(t ). In fact, Eqs. (3.11) and (3.12) are 
nothing else but the two first equations of the hierarchy. It must be noticed 
that Eqs. (4.1) are also valid if one uses the Boltzmann equation, but, then, 
the moments Me,n(t ) must be computed with the reference distribution 
function (2.4). In this case, each equation of the hierarchy (4.1) would 
contain all the moments of the distribution function. The main simplification 
of the BGK approximation is that only M2(t ) or, equivalently, O(t) is needed 
to know the distribution FB(x, t), and, from it, all the moments Me,,(t ). 

A glance at Eq. (3.10) shows that F(x, t) is expressed in terms of the 
initial condition and the values of FB(x, s) for 0 ~< s ~< t. In other words, 
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F(x, t) only depends on the initial moments and the past history of 0. Of 
course, the same property holds for all the moments Mn(t ). Let us make this 
point explicit. Multiplication of (3.10) by x n and integration over x yields 

r(d/2) ~ ~o M.(t) = e.(t) ~ r(n + g/Z) gs 

• e-~v"~(x)"-')FB(x, s) 

dx X"r 

(4.3) 

where Pn(t), defined as 

F(d/2) x"e - ~vHP~X)tF(x, P.(t) - r(n + d/Z) dx 0) (4.4) 

incorporates the initial condition effects. The energy integration in the second 
term on the right-hand side of Eq. (4.3) can be easily evaluated, and one gets 

Mn(t)=P"(t)+2fldse-(t-') [0(s)]"+l [ i  70-~-)- 1 + 0-0-~+1 

X [l +_~(t_ s) O(s)] -"-'-all2 (4.5) 

Of course, the time derivative of this equation leads to Eq. (4.1). 
Equation (4.5) deserves some comments. Taking into account (3.15), 

we see that all the moments of the distribution function are expressed as a 
nonlinear and non-Markovian functional of the second moment M2, plus a 
term containing all the initial moments. In the case of the Boltzmann 
equation for Maxwell molecules, (1'6'1~ M,(t) is given by a function of Mm(O ) 
with m ~< n. That means that, for instance, two different initial distribution 
functions having the same initial value M2(0 ) will evolve in time in such a 
way that both will always have the same value of Mz(t ). This is not true for 
VHP interaction either in the BGK model or in the Boltzmann equation. 

Our aim is to evaluate R(x, t) given by Eq. (3.18). In this equation O(t) 
is given by the solution of Eq. (4.5) taking n = 0 ,  1, or 2. Due to the 
complexity of the time dependence of 0, we have not been able to find an 
analytic solution, even for very special and simple initial conditions. This 
may be a little shocking since the Boltzmann equation for the VHP 
interaction has been exactly solved for a two-dimensional system. (5) 
Nevertheless, the following arguments will clarify the reason for this dif- 
ference. 
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Let us introduce the Laplace transform of F(x, t) or generating moments 
function 

G(z, t) = f ?  dx e-ZXF(x, t) 

r(n + d/2) 
= (-1)" n!r(d/2) M"(t)z" (4.6) 

n=0 

For the reference distribution function (3.5) we have 

cs(~, t ) = [ o  dx e -Z%(x ,  ~) = ~(t)I1 + zO(O l -~'~ (4.7) 

The Laplace transform of Eq. (3.8) for the VHP model is 

t ~t d c~z +1 G(z, t) = 1 2 

2 1 + (1 +z)  O(t) 
1 "~-~9(g) [1 "3ffZO(t)] d/2+l (4.8) 

As O(t) is a very complicated functional of G(z, t), this equation is very hard 
to solve. On the other hand, the Boltzmann equation for VHP interaction 
leads for two-dimensional systems to (1) 

c~ 1) G(z, 1 ( ~ - -  ~zz + t ) = T { 1  - [ G ( z , t ) ]  2} (4.9) 

The general solution of this equation is 

~ , ( z + t ) + ( z - - 1 ) e  t 
G(z, t) - (4.10) 

(z + 1) qt(z + t) - e - t  

where ~(z) is a function depending on the initial conditions, and is deter- 
mined by setting t = 0 in Eq. (4.10). If the initial distribution is singular at 
some value x = x 0, the solution (4.10) shows that the evolution of the system 
generates new singularities at 2x 0, 3x 0 ..... This propagation of singularities 
is not present in the BGK model, as is seen from Eq. (3.8). The distribution 
function Fs(x, t) is, by definition, a continuous function of x, independently 
of singularities of F(x, t). 

We must point out that the simplicity of Eq. (4.9) is lost when three- 
dimensional systems are considered. For d 4= 2 the analytical solution of the 
Boltzmann equation for the VHP interaction is not known. 
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5. IN IT IAL  C O N D I T I O N S  

One of the most interesting features found in the solution of kinetic 
models is the presence of the so-called Tjon effect. For some kind of initial 
distributions the relaxation towards equilibrium of the high-energy region is 
not monotonic. (1'z'6'11) The same effect has also been observed in molecular 
dynamics simulation of dense fluids. (12) Hauge (6) has proposed a criterion to 
know whether a given initial condition will lead to the Tjon effect. According 
to it, the effect is expected if 

M2(0 ) > 1 (5.1) 

with Mz(t ) defined by Eq. (3.14). This condition was derived for Maxwell 
molecules, and, strictly speaking, it cannot be extended to other interactions. 
Only in the case of Maxwell molecules the behavior of the distribution near 
equilibrium is mainly governed by the initial value of M 2. Nevertheless, from 
a practical point of view, the criterion (5.1) has proved to be useful, even for 
high-density systems. (12) 

For VHP interactions we have found in the previous section that the 
time evolution of Mz(t ) depends on all the moments of the initial 
distribution, and so Hauge's criterion cannot be exact. But we are going to 
see that, in the BGK model, it is a trustworthy rule for most initial 
conditions. More precisely, we could say that very often the knowledge of 
Mz(0 ) is enough to predict whether there will be Tjon effect and, then, the 
criterion (5.1) applies. On the other hand, it is possible that M2(0 ) < 1, but 
the distribution function exhibits overpopulation at high energies. 

From expression (3.19) it is found that RB(x ) is equal to one for an 
energy x* given by 

0 l o g [ l ( l + O )  Od/2] (5.2) x*(O) = O-- 1 

The value of x* goes to �89 + 1) when 0 goes to one. Going back to Fig. 2, 
let us first suppose that 0(0) > 1 and R(x, 0) < 1 for x > x*[0(0)] = x  0. The 
BGK equation shows that R(x, t) exponentially tends towards RB(x, t). This 
tendency is stronger as we consider higher energies, because ~vHv(x) grows 
with x. If we assume, as is plausible, that O(t) slowly approaches equilibrium, 
we expect that R(x, t) for x > x 0 crosses the unit value before R(x, t)~-- 
RB(X, t). Afterwards, we would have a monotonic decay towards equilibrium. 
It is also clear from the shape of the curves R~(x) that the overpopulation 
effect increases with x. On the other hand, if 0(0) < 1 and R(x, 0) < 1 for 
x > xo, both distributions RB(x, t) and R(x, t) will approach equilibrium 
from below and we will have a monotonic behavior. Other possibilities can 
be analyzed in the same way. 
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The above qualitative arguments lead to the conclusion that the Tjon 
effect is expected at high energies if 0(0) > 1. Taking into account Eq. (3.15) 
and Fig. 1, this result is equivalent to condition (5.1). 

In our calculations, we have considered two kinds of initial conditions. 
The most widely used initial distribution in kinetic models is the so-called 
(a, fl) initial condition: 

where 

and 

F(x, O) = F,,~(x) = % (~(x - la)  + c~O(x - lfl) (5.3) 

fl - d 
c~ -- fl -- a (5.4) 

d - a  
ca - / ~  - a (5.5)  

These expressions have been determined from the normalization conditions 
M0(0 ) --- MI(0 ) = 1. Let us take fl > a. Then the positivity of the distribution 
function leads to 

O <~ a <~ d <<.fl (5.6) 

The initial moments of the distribution (5.3) are 

r ( d / 2 )  an(fl  - d)  + f l"(d  - a )  

M . ( O  ) - 2 " r ( n  + d /2  ) fl - a 
(5.7) 

In particular, it is 

(d - a ) ( 5  - d) + d 2 
M2(O ) = (5.8) 

d(d  + 2) 

and the condition (5.1) for this case reads 

(d - a)(fl - d) > 2d 

The other initial condition we have investigated is 

d td/2 xd/2-1 
F ( x , O ) = F . ( x ) = \ ~ /  F(---(d/2)exp( d d-1 x)  

(5.9) 

4(d - 1 

l d 2 ( d -  1 ) 2 ( d + 4 ) ( d +  6) ] x2 
/zx4 + ( d -  l )3 (d+ 2) 2d 2 P 

3 d - 4  ( d - 1 ) 4 ( d + 2 ) ( d + 4 ) ( d + 6 )  I 
- -  + 16d3 r (5 .1o)  
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where/~ is a parameter. Initial conditions of this sort have been studied in the 
context of the Boltzmann equation by Cornille and Gervois "1) (Maxwell 
molecules) and by Ernst ~1) (two-dimensional VHP interaction). The initial 
moments of (5.10) are given by 

mrt(0) = (d~)n+4)(n %- d)(F/%- 1%-d)(n %- 2 %-d)(n %- 3 %-d)/~ 

[ + 
t ( d -  1) ' ( , /+  2) - -  2 

[[d3(3d -~_]_)  )4 %- (d %- 2)(d %- 4)(d %- 6) p] d t 4  (5.11) + 

The first moments are M0(0 ) = Ml(0 ) = 1, and 

d - 4 (d - -  1)6(d %- 4)(d %- 6) 
M2(O)=l+d2(d+2 ) ~-2 d6 /./ (5.12) 

and the condition (5.1) becomes 

d4(4 - d )  

~t >/~o = 2(d - 1)6(d + 2)(d + 4)(d + 6) 
(5.13) 

For d = 2 it is r o = 1/12, while for d = 3, P0 = 9/4480. Positivity of F,(x) 
for all positive values of x requires 

0 ~/z 4/~max (5.14) 

where 

,/'/max = d 4  2(d2 + 3d + 4) + [2(d + 2)(2d 3 + 7d 2 + 7d - 20)] ~/2 
2(d_l)S(d+2)(d+3)(d+4)(d+6 ) (5.15) 

i.e.,//max ~ 0.379 for d = 2 and Pmax ~- 0.0525 for d = 3. 

6. RESULTS 

Here, we present the results obtained by numerically solving the 
equations derived in Sections 3 and 4 with the initial conditions discussed in 
Section 5. The numerical method employed is outlined in Appendix B. Let us 
first consider three-dimensional systems. For the (a, fl) initial distribution we 
have studied the cases (ct, f l )=  (1,4), (1, 9), (1, 16), and (1, 25). The last 
three pairs verify condition (5.9) and, so, overpopulation effect is expected. 
In the case of the distribution (5.10) we have taken p =P0 and ~t =Pro,x" 
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Time evolution of O(t) starting from several initial distributions of the forms given by 
Eqs. (5.3) and (5.10) in the three-dimensional case. 

In Fig. 3 we have plotted the time evolution of O(t). Apparently, it 
presents a monotonic relaxation in all cases and for all times. Nevertheless, 
some remarks are needed for/2 =/20- According to the definition of/20, we 
have in this case M2(0 ) = 1, and, then, 0 (0 )=  1, which are their equilibrium 
values. Nevertheless, O(t) does not remain constant, although its variation is 
not perceptible in the graph because the highest value it takes is roughly 
1.004. The evolution of the system is not governed by 342(0 ) and the Hauge 
criterion (5.1) is meaningless. Higher-order moments must be considered. In 
fact, an analysis of the third initial moment gives a qualitative explanation 
for the behavior of O(t) in this case. 

Now, let us study the time evolution of R(x, t) defined by Eq. (3.17). In 
Fig. 4 we have plotted R(x, t) versus x for the (a, fl) initial conditions. The 
curves are given for three characteristic times. In agreement with the 
criterion (5.9) the relaxation towards equilibrium is monotonic in the case 
(a, B) = (1, 4). In the other three cases, the high-energy tail of the 
distribution function has already crossed the equilibrium value at t = 0.05, 
i.e., the system presents the Tjon effect. Besides, the effect is greater as the 
value of the left-hand side of (5.9) increases. For a given pair (a,B), R(x, t) 
is an increasing function of x, i.e., the effect shows up sooner and is greater 
as we consider higher energies. On the other hand, the low-energy region 
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Logarithmic plot of  R(x, t) versus x at three characteristic t imes for (a, fl)-initial 
distributions. The vertical broken lines indicate the posit ions of l a  and {ft. 

always presents a monoton ic  behavior. Finally, we notice that the 
equilibrium relaxation time o f  R(x, t) is o f  the same order as that of  O(t). 

As the initial distribution function (5.3) is singular at x =  ~a and 
x --= �89 it is easily seen from Eq. (3.8) that R(x, t) is also singular at these 
points. We have denoted this by means  of  vertical broken lines at {a  and �89 
in Fig. 4. It is interesting to study the relaxation of  the distribution function 
in the vicinity o f  the initial peaks. To do so, we define 

f-~+~x~ {~-ax~ dx F(x, t) 
Ry(t)-- .{(r+ax) eq " (6.1) 

J�89 dxF (x) 
for 7 = a or ft. In Fig. 5 we show the results obtained for the evolution of  
R~(t) and R~(t) with a value Ax = 0.045. We see that the population in the 
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Fig. L Time evolution of R~(t) and R~(O for the (a,/~) initial conditions considered. R~(t), 
where 7 =- a or fl, represents the relative population of particles with an energy differing from 
~, less than ~Ax = 0.0225, Notice that a logarithmic scale has been used. 

vicinity of each peak approaches the equilibrium value in a monotonic way 
in all the cases. Besides, there is a first stage in which the decay is 
exponential. This can be understood in the following way. The reference 
distribution function is, by definition, a regular function of x, no matter how 
singular the true distribution is. So, for the initial conditions under con- 
sideration, 

~y_~x~ dx F.(x, t) 
Ry(t) >> R.,r(t ) = ;~y+ax) (6.2) 

for t small. Then, the BGK equation (3.8) leads for short times to 

R ~(t) ~- Rr(0) exp[--~v.v(-~y)t] (6,3) 

A more careful analysis shows that the exponential behavior lasts longer the 
smaller the value of Ax is. Expression (6.3) also explains why the slope of 
Rv(t) increases with the value of 7, since ~vnv(x) is an increasing function 
of x, 

The p-initial conditions (5.10) are analyzed in a similar way. The time 
evolution of R(x, t) for tt =Po and/1 =~m,~ is represented in Fig. 6. (Notice 
the logarithmic scale used for ~t =#raax') In both cases, R(x,O) presents a 
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Fig. 6. Plot of R(x, t) versus x at different times starting from/t-initial distributions with 
/t =/1 o and # =/lma • in the case d = 3. For ~t =/~max a logarithmic scale has been chosen. 

maximum,  cutting the line R = 1 at three points. For  g = r there is a slight 
overpopulat ion phenomenon at high energies, which appears  for times of the 
order of  the equilibrium relaxation time. Let us recall that this case 
corresponds to 0 ( 0 ) =  I, higher-order moments  making 0(t) reach a 
max imum above unity. Concerning the case fl=/ ' /max, we observe a 
nonmonotonic  relaxation of  R(x, t) in the region x ~ 10, that  is, the region 
for which RB(x, O) > R(x, 0). 

As mentioned before, the Bol tzmann equation for the two-dimensional  
V H P  interaction has an exact solution for arbi trary initial conditions, t1'5~ As 
a comparison,  we have also numerical ly solved the B G K  equation for d--- 2, 
starting from the initial distribution (5.10) with/t---- 1/15 and with/J = 3/20. 
Figure 7 shows the time evolution of  the second moment  M2(t ) for these 
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Fig. 7. Time evolution of the second moment M2(I ) for a two-dimensional VHP gas with 

two different/l-initial distributions according to the Boltzmann equation (broken lines) and to 
the BGK model (solid lines). 

�9 ' n(D cases both from the Boltzmann equauo and from the BGK approx- 
imation. In both kinetic equations, the relaxation of ME(t ) is monotonic in 
the case It = 3/20 and nonmonotonic in the case It = 1/15. However, the 
evolution is faster in the BGK model, in such a way that, for It = 1/15, M2(t ) 
overshoots unity and tends finally to equilibrium from above. 

Let us now compare the evolution of the two distribution functions. In 
Fig. 8 we have plotted the function R(x, t) obtained from the Boltzmann 
equation and the one from the BGK equation for three characteristic times 
and in the cases It = 1/15 and It = 3/20. (Curves corresponding to the 
Boltzmann equation have been taken from Ref. 1.) In this figure, we observe 
that, while the qualitative agreement is satisfactory in the low-energy region, 
this not true when we consider higher energies. In contrast with the 
Boltzmann solution, the BGK solution at high energies evolves very rapidly, 
having already crossed the equilibrium value at t = 0.1 in the case It = 3/20. 
Even more, the BGK solution for It = 1/15 relaxes in a nonmonotonic way 
in the high-energy region (although this happens for times greater than those 
considered in Fig. 8). This is due to the nonmonotonic behavior of the 
corresponding Mz(t), as observed in Fig. 7. In fact, this is a case where the 
Hauge criterion (5.1) does not apply: the system described by the BGK 
model for a two-dimensional VHP interaction presents an overpopulation 
effect, in spite of being ME(0 ) < 1. 

The reason for this discrepancy between the Boltzmann and the BGK 
solutions at high energies lies in the approximation (2.22). More precisely, 
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for a homogeneous and isotropic VHP gas, the BGK reference distribution 
Rn(x, t) is a very rapidly increasing function of x if O(t) > 1, while the 
Boltzmann reference function may not be so. Besides, the VHP interaction 
emphasizes this difference, as the collision frequency increases with the 
energy. However, we want to point out that we do not consider the BGK 
model kinetic equation just as an approximation of the Boltzmann equation, 
but as a model in itself. 

822/37/1-2-10 
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APPENDIX A 

Here we 
notation 

Then, we have 

outline the derivation of Eqs. (2.25)-(2.27). Let us use the 

@(v)) t = f dv ~o(v)f(r, v; t) (A. t) 

@(v)}nt = f dv ~0(v)fo(r, v; t) (A.2) 

(1)t = n(r, t) (A.3) 

(v)t = n(r, t) u(r, t) (A.4) 

(VZ(r, t)) t = dn(r, t) k, T(r, t) (A.5) 
m 

(VZ(r, t) V(r, t)), = 2 J(r, t) (A.6) 
m 

(V4(r ,  t ) )  t = q~(r, t) (a.7) 

where the meaning of the different symbols is given in the main text. Now, 
we are going to use conditions (2.5), i.e., 

(~vup(r, v; t)A~(v))t = (r v; t)A~(v))at (A.8) 

Taking into account Eq. (2.6), this is equivalent to 

(~VHp(r, V; t)A ~ IV(r, t)]), = (~vnp(r, v; t)A~[V(r, t)]) ,  t (A,9) 

Using the expression (2.17), one easily gets 

(~VHP)t = CVHP n22 knT (A.10) 
m 

J 
<~v.p V)t = Cv.p n2 - -  (A.11) 

m 

(~vHp V2)t = CvHpn l flk + n ( d - ~ - )  2 ] (A.12) 
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The calculation of (~vnpA a(V))Bt is simple if one uses the relations 

((pV)B t = ~-~ (~9)B t (A. 13) 

and 

Qo V~)~t- (q~)at (A.14) 
ae 

for any dynamical variable (p(v). The result is 

(~_)a/2[ kB T b 2 d )  
({vuP),t = Cvn~nae ~ ~ d T +  ~ j  + ~c (a.15) 

1 ( 
(~vnpV)Bt = Cvuenae ~ d + b (A.16) 

(~VHP vE)Bt = CvHp naeb2/4~ 4c 2 

keT b 4 ] 

By equating Eqs. (A.10)-(A.12) to Eqs. (A.15)-(A.17), we get Eqs. 
(2.25)-(2.27). 

APPENDIX B 

In this appendix we are going to briefly describe the numerical method 
used to obtain the results presented in Section 6. 

The function O(t) is the solution of the closed integral equation resulting 
from taking n = 0, 1, or 2 in Eq. (4.5). Concretely, for n = 1, we have 

l_P, ( t )=2( 'dse_<t_s)  [O(s)] z l + l / O ( s ) + 2 ( l + t - s ) / d  (B.I) 
:o 1 + O(s) [i + (2/d)(t - s) 8(s)] d/2+2 

Once O(s) is known for s<,t, Eq. (3.18) allows us to get R(x,t). 
Equation (3.I8) can be written in a recursive form as 

R(x, t + At) = e-~wF(x)atR(x, t) 

+ s) (B.2) 
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for any arbitrary time interval At. The numerical method employed consists 
on replacing the right-hand sides of Eqs. (B.1) and (B.2) by the trapezoidal 
rule approximation. Thus, Eq. (B. 1) becomes 

2 0j ) (B.3) 
Aj=Oj  1+ d l~-Oj 

where 

A j  - 
1 - -  P l ( t j )  8 - t j  

At 
j - 1  

- 2 ~ e - ( t j - t~)  - -  

k = l  

0~ 1 + 1/0 0 + 2(1 + Q)/d 
1 + 0 0 [1 + (2/d) tjOo] a/z+z 

0 2 1 + 1/0 k + 2(1 + tj - tk)/d 
1 + O k [1 + (2/d)( t j -  tk) Ok] d/2+z 

(B.4) 

and 

Ok ~ O(tk), t k ==- k At (B.5) 

Here, At is a sufficiently small time interval. The approximation on Eq. (B.2) 
yields 

R(x, tj) = e-~V"p(x)atR(x, tj ~) 

+ Cvnp(x) ~ let ~v"P(x)atR~x, tj_,j~ + Rs(x, tj)] (B.6) 

where RB(x, tj) is given from 0j, which is the positive root of Eq. (B.3), i.e., 

Oj= Aj--  1 + [(Aj+ 1)2+ 8A/d] '/2 
2(1 + 2/d) 

(R.7) 

Notice that Eq. (B.3) is consistent with Eq. (B.6) and can be obtained 
from it. Moreover, Eq. (B.6), which contains all the powers of At, is exact up 
to the order (At) 2. The present method has the advantage of not requiring 
any discretization on the energy. Thus, it is possible to determine the 
evolution of R(x, t) for a given value of x without the knowledge of the 
distribution function for the remaining energies. 
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